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Alzheimer’s disease (AD) is the most common form of dementia affecting people mainly in their sixth decade of life and at a higher
age. It is an extensively studied neurodegenerative disorder yet incurable to date. While its main postmortem brain hallmarks are
the presence of amyloid- 3 plaques and hyperphosphorylated tau tangles, the onset of the disease seems to be largely correlated to
mitochondrial dysfunction, an early event in the disease pathogenesis. AD is characterized by flawed energy metabolism in the
brain and excessive oxidative stress, processes that involve less adenosine triphosphate (ATP) and more reactive oxygen species
(ROS) production respectively. Mitochondria are at the center of both these processes as they are responsible for energy and
ROS generation through mainly oxidative phosphorylation. Standardized Ginkgo biloba extract (GBE), resveratrol, and
phytoestrogens as well as the neurosteroid allopregnanolone have shown not only some mitochondria-modulating properties
but also significant antioxidant potential in in vitro and in vivo studies. According to our review of the literature, GBE,
resveratrol, allopregnanolone, and phytoestrogens showed promising effects on mitochondria in a descending evidence order
and, notably, this order pattern is in line with the existing clinical evidence level for each entity. In this review, the effects of
these four entities are discussed with special focus on their mitochondria-modulating effects and their mitochondria-improving
and antioxidant properties across the spectrum of cognitive decline-related disorders. Evidence from preclinical and clinical
studies on their mechanisms of action are summarized and highlighted.

1. Introduction

L.1. Alzheimer’s Disease: A Well-Known yet Untreatable Age-
Related Neurodegenerative Disorder. Alzheimer’s disease
(AD), the most common neurodegenerative disorder, as well
as dementia type, is characterized by extracellular senile beta-
amyloid protein (Af) plaques and intracellular neurofibril-
lary tau tangles [1]. There are two types of AD: (i) the
sporadic form of AD (SAD) whose onset occurs above the
age of 65 and (ii) the familial AD forms (FAD) that are more
rare with less than 1% occurrence among the AD cases and
whose onset starts at a younger age (<65 years). The biolog-
ical system of aging is the major risk factor of SAD [2]. The
familial forms (FAD) bear inheritable mutations in the amy-
loid precursor protein (APP) and presenilin 1 and presenilin

2 genes [3, 4]. The symptoms of AD are the same in SAD and
FAD [5]. There are different types of age-related cognitive
diseases which differ in severity. SMI (subjective memory
impairment) is the condition when nondemented aged peo-
ple express subjective complaints related to their memory
but have no organic or identifiable condition [6]. SMI is dis-
cussed as an early predictor of dementia [7-10]. The concept
of mild cognitive impairment (MCI) defines an intermediate
stage between normal aging and dementia. MCI patients
show mild but measurable changes in cognitive tests and
thinking abilities that are noticeable to the patients and to
family members, but they are able to carry out everyday
activities. Approximately 15-20% of people aged 65 or older
have MCI. This group of people represents a population at
increased risk for developing dementia, especially MCI


http://orcid.org/0000-0002-9341-3669
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9695412

involving memory problems [11]. The occurrence of MCI in
the population is 3.2%, of which 11.1% of the cases convert to
dementia within 3 years [12]. It has been indicated, yet not
conclusively, that SMI is a precursor of MCI which can then
lead to dementia or AD [4, 13]. Dementia is a more severe
condition compared to SMI and MCI which affects aged
people and interferes negatively in the performance of every-
day activities. It is described as a cluster of symptoms related
to mental, cognitive, and memory decline [12, 14]. There are
different forms of dementia, such as AD, the most common
type, and vascular dementia. Vascular dementia (VaD) is
the second most common form of dementia and occurs as a
cognitive decline due to a reduced blood flow in the brain
(e.g., due to brain injury or stroke). However, sometimes
different kinds of dementias coexist and their discrimination
is difficult due to overlapping clinical symptoms. Moreover,
many of these patients also suffer from psychiatric or behav-
ioural problems that are sometimes referred to as BPSD
(behavioural and psychological symptoms of dementia) or
NPS (neuropsychiatric symptoms), including irritability,
anxiety, psychosis, and aggression [15].

1.2. Mitochondria and Neuroplasticity. Mitochondria are
essential yet independent organelles contained in eukaryotic
cells, and they are responsible for numerous functional activ-
ities within the cells. However, they are not always an intrin-
sic structure of eukaryotic cells. They occur through the
endosymbiosis of an alpha-proteobacterium into a prokary-
otic progenitor, and this is why they contain their own
DNA, namely, the mitochondrial DNA (mtDNA) [16].
Regarding the structural characteristics of these organelles,
they contain two structurally and functionally distinct
membranes, the outer and the inner membranes. The inner
membrane encapsulates the matrix and also carries the elec-
tron transport chain (ETC) where oxidative phosphorylation
(OXPHOS) is taking place. mtDNA is located in the matrix
encoding 13 proteins which are used as structural compo-
nents of the ETC complexes [17].

Mitochondria have obtained the title of “powerhouse of
the cell” due to their ability of producing the energy, mainly
through OXPHOS, required for the survival and functioning
of the cell. Actually, they are more than just a “powerhouse”
as they are the ultimate multitaskers which define the cell
fate. Apart from the production of energy in the form of
ATP, mitochondria are the key modulators of brain cell
survival and death by controlling calcium (Ca**) and redox
equilibrium (which in turn affects neurotransmitter release
and neuronal plasticity), by producing reactive oxygen
species (ROS), and by controlling cell apoptosis [17-19].
The brain is an organ which requires a considerable amount
of energy in order to operate, maintain, and enhance
neuronal functions and plasticity. Neurons are postmitotic
polarized cells with significant energy demands. OXPHOS,
taking place in mitochondria, is the main energy provider
in the form of ATP, and neurons depend almost solely on
this procedure in order to satisfy their energy needs [20]. In
particular, neurons direct this energy into the formation of
interconnections, the synapses. The number and strength of
these neuron interconnections define synaptic plasticity,
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which is responsible for cognitive function [21]. Synaptic
plasticity is a crucial mechanism by which the neural activity
generated by an experience alters synaptic transmission and
therefore modifies brain function [22]. Neurite outgrowth
is a process wherein developing neurons generate new
projections as they grow in response to guidance cues. Nerve
growth factors (NGF), or neurotrophins, are one family of
such stimuli that regulate neurite growth [23]. Brain-
derived neurotrophic factor (BDNF) exerts several actions
on neurons ranging from the acute enhancement of trans-
mission to long-term promotion of neurite outgrowth and
synaptogenesis [24, 25]. Synaptic plasticity includes the
dynamic regulation of long-term potentiation (LTP), spine
density, and the number and length of dendrites and axons
(neuritogenesis), as well as neurogenesis. Adult neurogenesis
generates functional neurons from adult neural precursors in
restricted brain regions throughout life [26]. These plasticity
processes need a high energy requirement, and this is why
mitochondria play such a pivotal role in the well-being of
neurons especially when neurons need to adapt to periods
of pathologically reduced functions.

1.3. Mitochondria, Oxidative Stress, Aging, and AD. However,
while mitochondria regulate the functions of healthy
neurons, they are also largely affected during aging and path-
ological states such as age-related neurodegenerative dis-
eases. Mitochondria are not only the regulators of energy
metabolism but are also the main ROS generators. ROS are
immensely reactive species which are produced in mitochon-
dria mainly by complexes I and III of the ETC when there is a
leak of electrons. They are chemical species including
hydroxyl radical ("OH), superoxide anion (O,-), and hydro-
gen peroxide (H,0,) which can interact with and damage
DNA and proteins and lipids which can compromise cell
survival leading to aging and to vulnerability to several dis-
eases [27, 28]. When they exist at normal levels, they consti-
tute signalling agents in many physiological processes, such
as redox homeostasis, cellular death, cellular senescence,
and cell proliferation, and they can also trigger immune
responses, synaptic plasticity, and cognitive enhancement
[20, 27]. ROS are neutralized by antioxidant enzymes such
as superoxide dismutase, which transforms the radicals
(O,-) into H,0,, and by catalase, glutathione peroxidase,
and thioredoxin peroxidase, which diffuse H,0, [27]. In a
healthy state, there is a balance between ROS production
and neutralization. Nevertheless, when ROS are produced
in excess, e.g., during aging, they directly affect mitochondria
since mitochondrial membranes consist of long polyunsatu-
rated fatty acids which are easily oxidized. Also, mtDNA is
found in close proximity to the ROS source and is susceptible
to mutations resulting in the production of faulty ETC pro-
teins, leading back to the production of more ROS [18, 28].
It could be said that mitochondria are the main organelles
in aging and neurodegeneration by being both generators
and targets of ROS. It has been shown that aging is character-
ized by a rise in oxidative stress, a decline in antioxidant
defense systems, and an impairment of the OXPHOS. So,
aging is characterized by energy deprivation and a shift of
the redox state towards oxidation. Mitochondria are at the
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center of these hallmarks [20]. Neurons, which highly
depend on OXPHOS to satisfy their energy demands, are
particularly susceptible to energy hypometabolism [20]. In
addition, taking into account that they are nondividing cells,
neurons are almost as old as the entire organism and are not
replaced during life with the exception of the hippocampus
that continuously generates new neurons during adulthood
[20, 29]. This means that neurons accumulate oxidative stress
and therefore defective mitochondria during aging [20, 30].
This is particularly important since mitochondrial dysfunc-
tion represents an early event in AD pathogenesis [20, 28, 31].

Intense oxidative stress and decreased brain energy
metabolism are common characteristics of both normal
aging and AD, although to different extents [20]. Of note,
mitochondrial abnormalities are observed in FAD and SAD
brains [32, 33]. On one hand, recent data obtained from
AD models, in which mitochondrial failure is a prominent
feature, implicate tau hyperphosphorylation as well as Af
overproduction and deposition. On the other hand, A and
tau target mitochondria synergistically, thereby possibly
amplifying each other’s toxic effects. This interrelationship
of Ap, tau, and mitochondrial function constitutes a vicious
cycle [34]. The mitochondrial cascade hypothesis postulates
that mitochondrial dysfunction represents the most
upstream pathology in AD [28]. According to this hypothe-
sis, arresting brain aging will prevent the development of
AD [32].

1.4. Mitochondria-Directed Natural Compounds. The current
mitochondrial cascade hypothesis postulates mitochondrial
dysfunction as a central pathomechanism in age-related
degenerative disorders [28, 35, 36]. Taking into account their
primary role in aging and in the early stages of AD, mito-
chondria constitute promising targets for therapeutic strate-
gies. For this reason, pharmacological studies are directed
in enhancing mitochondrial functions such as ATP produc-
tion and respiration or in reducing mitochondrial harmful
by-products such as ROS [36]. To date no drugs are able to
cure or stop the progression of age-related neurodegenerative
disorders. Most of them may be beneficial in delaying the
progression of AD and only partially treat some of its symp-
toms (e.g., confusion and memory loss).

Many drugs including whole plant extracts and single
compounds originate from natural and botanical sources.
Two single compound AD drugs are derived from plants:
(i) the acetylcholine-esterase inhibitor, galanthamine,
derived from the Galanthus species (Galanthus caucasicus
and Galanthus woronowii) and (ii) rivastigmine, a physo-
stigmine analogue (physistigmine was isolated from the
Calabar bean, Physostigma venenosum) [37, 38]. In addi-
tion, the phytopharmacon GBE that is used as antidementia
medicine was shown to improve mitochondrial function
emphasizing the concept of targeting mitochondria as an
emerging and promising therapeutic approach [35, 39].
Therefore, we focused our search on natural compounds
that possess mitochondria-enhancing properties based on
our own past and ongoing research as well as on research
of other groups. Standardized Gingko biloba extract (GBE),
resveratrol, phytoestrogens, and the natural neurosteroid

allopregnanolone fulfilled our criteria. Common targets of
these agents (Figure 1) have been reported, such as ROS, mito-
chondrial membrane potential (MMP), Af3, tau protein, anti-
apoptotic protein (Bcl-2), and OXPHOS (Figures 2 and 3).
Accordingly, in this review we aimed to summarize the molec-
ular modes of action of these natural agents with special focus
on mitochondria, their mitochondrial function-enhancing
properties, and their antioxidant properties. We discuss
evidence on their mechanism of action from preclinical as well
as clinical studies. Especially regarding clinical trials, there is a
different level of existing evidence for each phytochemical.
GBE, resveratrol, phytoestrogens, and allopregnanolone
appear in a descending order according to their clinical evi-
dence level. The databases PubMed and Google Scholar, as
well as the database Clinical Trials.gov were used for our search
with a focus on the years 2000-2018. For the clinical evidence,
we considered randomized, double-blind, placebo-controlled
trials as well as ongoing trials, systematic reviews, meta-analy-
ses, and Cochrane analyses.

2. Pharmacologic Features of Natural
Substances in Alzheimer’s Disease

2.1. Gingko biloba. Gingko biloba has existed for over 250
million years and is a native from Japan, Korea, and China;
however, it can be found worldwide. Traditional Chinese
clinicians originally utilized GBE for a variety of applications
[40]. There are several Ginkgo biloba extracts sold on the
market, including standardized and nonstandardized
extracts, which are also used in studies. The standardized
extracts have to meet specific criteria regarding their
manufacturing process, the quality of the plant material,
and their composition, which is not the case with the non-
standardized extracts. Many products have been reported
on the market which are not standardized and are even
adulterated. These products not only reduce the efficacy
of GBE, but they can be potentially harmful [41]. GBE
contains two main groups of active constituents ensuring
its medicinal effects: terpenes (including bilobalide and
ginkgolides A, B, and C) and flavonoids (including meletin,
isorhamnetin, and kaempferol). Both the United States
Pharmacopoeia and the European Pharmacopoeia define
as standardized only extracts that contain the active com-
ponents of Ginkgo in a certain and defined content. In
particular, the standardized extracts should contain 5-7%
triterpene lactones, 22-27% flavonoids, and less than 5
ppm of ginkgolic acids, which are toxic ingredients of
Ginkgo. [42]. Most toxicological, pharmacological, and clin-
ical investigations have focused on the neuroprotective
value of two main standardized extracts labeled EGb761
and LI 1370 [43-45]. The EGb761 extract consists of 24%
flavone glycosides (mainly quercetin, kaempferol, and iso-
rhamnetin) and 6% terpene lactones (2.8-3.4% ginkgolides
A, B, and C and 2.6-3.2% bilobalide), while the extract LI
1370 is composed of 25% ginkgo flavone glycosides as well
as 6% terpenoids. Several terpene lactones (ginkgolides and
bilobalide) show substantial mitochondria-protecting prop-
erties, while the flavonoid fraction seems to play an impor-
tant role in the free radical scavenging properties [46]. In



4 Oxidative Medicine and Cellular Longevity

h

| AP, _4, peptides | \j ( Aggregated A (plaque) W

—

‘ AP toxicity )

Oxidatives stress '“#

Mitochondrial impairments

|

Neuronal dysfunction

‘_’ Apoptosis ~#

j Common mitochondrial-related targets of GBE, resveratrol, phytoestrogen and allopregnanolone

F1GUre 1: Common mitochondria-related targets of natural substances in neuroprotection. In AD, the precursor of amyloid protein APP
is cleaved sequentially by - and y-secretases leading to the production of Af peptides, their aggregation, and the formation of
extracellular plaques. Different Af species exist, but Af, ,, is one of the most abundant and is the one that is mainly deposited in
the brain due to its hydrophobic and fibrillogenic nature. AD is associated with electron transport chain (ETC) impairments leading
to decreased ATP levels and basal respiration, with a decrease of antioxidant defenses and an increase of ROS production by
complex I and complex III (orange dashed arrows). Globally, Gingko biloba, resveratrol, and phytoestrogens have been shown to
protect against cell death in AD through a common mechanism of action by reducing abnormal aggregation of Af, amyloid beta
(Ap) toxicity, oxidative stress, mitochondrial impairments leading to neuronal dysfunction, and apoptosis. Gingko biloba, resveratrol,
and phytoestrogens are suggested to exert a beneficial effect in AD affected neurons, but their specific mechanisms of mitochondrial
interaction are not fully described yet. |: AD-related decrease. The green circle indicates the common mitochondria-related targets
of GBE, resveratrol, phytoestrogen, and allopregnanolone.

the following parts, only the effects of standardized GBE
will be discussed.

2.1.1. Mechanisms of Action Based on Preclinical Evidence

2.1.1.1. Direct Effects of GBE on Mitochondria. Several find-
ings demonstrate the mitochondria-modulating effect of
GBE, mainly in cellular and animal models of AD. In partic-
ular, GBE has been shown to attenuate effectively mitochon-
drial dysfunction through several mechanisms of action, such
as antioxidant effect and free radical scavenging properties,
with all the evidence leading to this conclusion having been
reviewed extensively [35, 47-49]. In vitro, GBE was shown

to ameliorate mitochondrial function by improving MMP
and ATP levels at a low concentration of 0.01 mg/ml in
pheochromocytoma cells (PC12) cells [46]. In amyloid
precursor protein- (APP-) transfected human neuroblastoma
cells, an AD cellular model with increased A3 generation,
GBE improved respiration of mitochondria, stimulated mito-
chondrial biogenesis, and increased ATP production [50].
Mitochondria-related modes of action of GBE are summa-
rized in Figure 2.

2.1.1.2. Effects of GBE on Oxidative Stress, AP, and Tau
Toxicity Related to Damage of Mitochondria. A plaque
deposition is one of the main hallmarks of AD. The
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overexpression of both Af3 itself and its precursor protein, the
amyloid precursor protein (APP), has been used to create cel-
lular and animal models of AD. GBE has been shown to be
effective in reducing both the deposition of Af3 and its toxic-
ity. In detail, the prooxidant A, ;- peptide treatment was
shown to decrease complex I and IV activities and to increase
the level of reactive oxygen/reactive nitrogen species (ROS/
RNS) in SH-SY5SY cells [51]. Thus, pretreatment with GBE
was able to reduce the A -related increase in ROS/RNS levels
as well as to ameliorate the complex I and IV activities [51].
GBE protected against A, ,, oligomer-induced neurotoxic-
ity and cell damage with an indirect effect on SH-SY5Y
neuroblastoma cells by improving Hsp70 protein expression
and subsequently by activating the Akt (protein kinase B)
pathways as well as ER stress [52]. GBE also attenuated
AP, _4, oligomer-induced cell damage and protected against
Ap toxicity and oxidative stress [53, 54], as well as apoptosis
[52]. GBE was also able to reduce Af production [55]. In
terms of animal models, a chronic treatment with GBE
improved cognitive defects in a transgenic mouse model of
AD (Tg2576), a model that overexpresses a mutant form of
APP [53]. GBE was also shown to decrease Af oligomers
and to significantly increase neuronal proliferation in the
hippocampus of young (6 months) and old (22 months) mice
in a double transgenic mouse model (TgAPP/PS1) [54]. A
chronic daily treatment with GBE for 6 months improved
the cognitive function and alleviated amyloid plaque

deposition in two-month-old APP/PS1 mice. Of note, GBE
treatment seems to decrease the level of insoluble A, while
the soluble content of A3 was unchanged [56]. GBE reduced
the hyperphosphorylation of tau at AD-specific Ser262,
Ser404, Ser396, and Thr231 sites, rescued the activity of tau
phosphatase PP2Ac and kinase GSK3f, and reduced the
oxidative stress in the hippocampus and prefrontal cortex
on a hyperhomocysteinemia-treated rat model of AD.
Memory lesions were also restored, and the expression of
synapse-associated protein PSD95 and synapsin-1 protein
was upregulated [57].

2.1.1.3. Effects of GBE on Neuroplasticity Pathways. GBE
exerts its beneficial effects not only by acting on the Akt path-
way, as aforementioned, but also by acting on the cyclic AMP
response element-binding protein (CREB) [54, 58, 59]. CREB
phosphorylation induces transcriptional activation which
results in the expression of BDNF, and therefore, in synaptic
plasticity and cognitive enhancement. Conversely, lack of
CREB phosphorylation is a pathological ailment of neurode-
generative diseases such as AD [60].

In detail, the administration of GBE restored CREB phos-
phorylation in the hippocampus of TgAPP/PS1 mice [54].
Quercetin and bilobalide are the major constituents that have
contributed to GBE-induced neurogenesis [58]. Both constit-
uents promoted dendritic processes in hippocampal neurons
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and restored Af oligomer-induced synaptic loss, as well as
restored CREB phosphorylation [58]. Ginkgo flavonols quer-
cetin and kaempferol have been shown to stimulate BDNF
and phosphorylation of CREB in neurons isolated from dou-
ble transgenic AD mouse (TgAPPswe/PS1e9) [59]. Recently,
our team could confirm the neurite outgrowth stimulating
effects of GBE in a 3D cell culture model (Figure 4).

2.1.2. Clinical Evidence. Apart from the preclinical studies,
the extract has been largely investigated in clinical trials in
a range of age-associated cognitive conditions from SMI
and MCI to dementia and AD. GBE has been suggested for
both the symptomatic treatment and prevention of those
cognitive decline-related diseases. The standardized GBE is
considered a phytopharmacon, and the dose of 240 mg/day
is recommended as the most effective by the guidelines for
biological treatment of dementias [12]. There are 9 categories

(A,B,C,ClL, C2,C3,D, E, and F) and 5 grades (1-5) of phar-
maceuticals used for AD and other dementias according to
the level of existing clinical evidence and the occurrence of
side effects, respectively. GBE belongs to category B of the
level of evidence (limited positive evidence from controlled
studies) and to grade 3 [12]. Here, we are going to highlight
evidence on the extract’s efficacy on subgroups of age-

associated cognitive conditions in an ascending severity
order (Table 1).

2.1.2.1. Patients with SMI and MCI. Three randomized, dou-
ble-blind, placebo-controlled, parallel-group trials were
conducted for patients with memory complaints, one in
SMI and two in MCI patients. In total, data from 61 SMI
and 460 MCI patients were evaluated. One trial conducted
in healthy aged patients with SMI showed that GBE
enhanced cognitive flexibility without changes in brain
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(a)

(b)

FiGURE 4: Standardized Ginkgo biloba extract (GBE) LI 1370 (Vifor SA, Switzerland) (100 pg/ml) increased neurite outgrowth of SH-SY5Y
neuroblastoma cells after 3 days of treatment in 3D cell culture. Pictures were taken using a cell imaging multimode reader Cytation3 (Biotek
Instruments Inc., X20 in black and white) after immunostaining (IMS, BIII-tubuline/Alexa488). Compared to the untreated SH-SY5Y cells
(CTRL, (a)), 100 pug/ml of GBE (b) was efficient in increasing the formation of neurites.

activation and that it mildly increased prefrontal dopamine
[61]. Two trials showed that GBE ameliorated neuropsychi-
atric symptoms (NPS) and cognitive ability in patients with
MCI [62] as well as improved cognitive functioning and
aspects of quality of life in subjects with very mild cognitive
impairment [63].

2.1.2.2. Patients with Dementia. GBE has been found partic-
ularly efficacious in demented people with neuropsychiatric
symptoms (NPS) [64, 65]. In total, 3 original papers, 1
systemic review, 6 meta-analyses, and 1 Cochrane analysis
involving 14974 demented patients were evaluated. In detail,
the pooled analyses of 4 published trials in a systemic review,
involving outpatients with mild to moderate dementia and
BPSD, demonstrated the efficacy of GBE at a daily dose of
240 mg [66]. Six meta-analyses (3 trials included in these
meta-analyses were conducted in 1997 [67-69]) of 32 con-
trolled, randomized, double-bind clinical trials and one
bivariate meta-analysis of 6 trials come to the conclusion that
GBE is efficacious and well tolerated in patients with a diag-
nosis of AD, VaD, or mixed dementia in three typical
domains of assessment in dementia, i.e., cognition, activities
of daily living (ADL), and clinical global judgment [65, 70-
74]. However, there are also the studies with inconclusive
or contrasting results to the efficacious effect of GBE in
demented subjects [75-77].

2.1.2.3. Patients with Specific Dementia Type: AD and Vascu-
lar Dementia. In total, data from 1 original paper, 1 review,
and 3 systematic reviews and meta-analyses involving 6880
patients with AD and VaD were evaluated. In detail, in an
original paper, low doses of GBE administered to patients
with vascular cognitive impairment in a randomized, dou-
ble-blind, placebo-controlled trial showed significant decel-
eration of cognitive decline versus placebo only in one
(Clinical Global Impression) of the four tests conducted in

the trial [78]. The systematic reviews and meta-analyses (3
trials included in these meta-analyses were conducted in
1997 [67-69]) concluded that GBE exerts potentially benefi-
cial effects on the improvement of activities of daily living,
cognitive function, and on global clinical assessment in
patients with MCI or AD, in mainly the AD type of dementia
and in aged people with VaD having NPS [79-82].

2.1.2.4. Prevention. The preventive effect of GBE was
reported in 14812 patients in three original papers and one
systematic review and meta-analysis. In contrast, there are
4 studies that do not support the efficacious effect of GBE
in preventing the onset of AD in either healthy aged or aged
with MCI people [83-86]. The outcome for the efficacy of
GBE in preventing the onset of AD in healthy individuals
varies among different studies. However, there is also high
variability in the design of the studies in terms of GBE doses,
duration of the treatment, sample size, statistical tools, and
compliance with the medication. Therefore, there is space
for criticism regarding the methodological design of studies
and the interpretation of the outcome. There are two large
studies which form good examples of scepticism towards
their negative outcome: the GEM study and the GuidAge
study [83, 84, 87]. The GEM study was conducted in healthy
old people (80 years old or more) and found no efficacy of
GBE in preventing the onset of AD. In this study, the compli-
ance of subjects with the treatment was nonadequate, yet this
parameter was not taken into account in the interpretation of
the results. In the GuidAge study, the conversion rate from
memory complaints to dementia was examined in aged peo-
ple with memory complaints and no difference was found
between GBE and placebo. However, the statistical power
for the analysis of hazards was found low. The selection of
suitable statistical methods to take into account increasing
hazards overtime is crucial for meaningful results and
increased significance [35].
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Based on the included studies, GBE has been reported in
only a few studies that show no effect. The majority of the
recent studies demonstrated that the treatment with doses
up to 240 mg/day was safe, well-tolerated, and eflicacious
against age-related disorders.

In summary, GBE has been proven more effective in
patients with cognitive impairment at baseline than pre-
venting the onset of cognitive impairment in healthy aged
subjects. As mentioned before (see Introduction), mito-
chondrial dysfunction is more profound in cognitive disor-
ders than in normal aging. Similarly, GBE shows increasing
promising effects with increasing cognitive impairment.
This, again, represents an indicator that GBE exerts its
effects clinically by acting on mitochondria [35]. Thus, we
can conclude that GBE can potentially improve mitochon-
drial dysfunction across the aging spectrum.

2.2. Resveratrol. Resveratrol, known as a polyphenol from
white hellebore (Veratrum grandiflorum), was discovered
by Takaoka (1939) as a component of several dietary sources
such as berries, peanuts, and red grape skin or wine. Siemann
and Creasy discovered that resveratrol is present at high
concentration in red wine [88]. Resveratrol has been reported
to possess several benefits, including antitumor, antioxidant,
antiaging, anti-inflammatory, cardioprotective, and neuro-
protective properties. This polyphenol has emerged as a
novel natural agent in the prevention and possible therapy
of AD [89].

2.2.1. Mechanisms of Action Based on Preclinical Evidence

In vitro and in vivo, the direct molecular targets of resveratrol
are not known in detail. However, there is evidence that res-
veratrol exerts a complex mode of actions through the pro-
tection of mitochondrial function and the activation of
biogenesis, through its effect on certain signalling pathways,
through its antioxidant effects, through the increase of A
clearance, and through the reduction of Af neurotoxicity
[90] (Figure 3).

2.2.1.1. Direct Effects of Resveratrol on Mitochondria. Dietary
supplementation with 0.2% (w/w) resveratrol suppressed the
aging-associated decline in physical performance in
senescence-accelerated mice (SAMP1) at 18 weeks of age by
improving several mitochondrial functions such as the
activity of respiratory enzymes, oxygen consumption, and
mitochondrial biogenesis, as well as the activity of lipid-
oxidizing enzymes [91]. In 18-month-old aged mice, resver-
atrol (15 mg/kg/day) and/or exercise for 4 weeks were able
to counteract aging-associated oxidative damage targeting
mitochondrial biogenesis and function by causing overex-
pression of peroxisome proliferator-activated receptor-
gamma coactivator (PGC-la) mRNA and by increasing
citrate synthase enzyme activity [92]. Mitochondrial bio-
genesis is induced by resveratrol through SIRT1 activation
and deacetylation of PCG-1a [90] (Figure 3).

2.2.1.2. Effects of Resveratrol on Oxidative Stress. Damaged
mitochondria activate ROS production during oxidative
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stress which is involved in apoptosis [93]. ROS may damage
the mitochondrial and cellular proteins and nucleic acids,
causing lipid peroxidation and resulting in the loss of mem-
brane integrity [94] (Figure 3). Resveratrol also protects
mitochondria by increasing the expression of the ROS-
inactivating enzymes glutathione peroxidase 1 (GPx1) and
superoxide dismutase 1 (SOD1) and by reducing the expres-
sion of the ROS-producing enzyme NADPH oxidase 4
(Nox4) [93, 95] (Figure 3). In line with this, resveratrol
rescued Ap-treated human neural stem cells (hNSCs) from
oxidative stress by increasing the mRNA of antioxidant
enzyme genes such as SOD-1, nuclear factor erythroid 2-
related factor 2 (NRF-2), Gpxl, catalase, and heme oxigenase
1 (HO-1) [96]. In addition, resveratrol exerted antioxidant
properties and attenuated oxidative damage by decreasing
iNOS and COX-2 levels [93].

2.2.1.3. Effects of Resveratrol on Af3 Toxicity Related to
Damage of Mitochondria. Thanks to its natural antioxi-
dant properties and/or by sirtuinl (SIRT1) activation,
resveratrol shows a neuroprotective effect because it
counteracts Af toxicity. In more details, resveratrol
increases the clearance of Af through the activation of
AMPK [90] (Figure 3). This natural molecule plays an
important role in reducing A neurotoxicity by phos-
phorylating protein kinase C delta (PKC-8) [90]
(Figure 3). Resveratrol also influences the Ap-induced
apoptotic signalling pathway through SIRT1 activation,
including inhibiting the expression of caspase protein 3
(caspase-3), apoptotic regulator Bax, Forkhead box O
(FOXO), and tumor protein p53, through blocking the
activation of c-Jun N-terminal kinase (JNK) and restor-
ing the decrease of B-cell lymphoma 2 (Bcl-2) expres-
sion, as well as through inhibiting the increase of the
nuclear factor kappa-light-chain-enhancer of activated B
cell (NF-kB) DNA binding [90] (Figure 3). Resveratrol
(20 uM) protected PCI2 cells against neurotoxicity
caused by Apf,; s by provoking autophagy which was
proven dependent on the tyrosyl tRNA synthetase-poly(-
ADP-ribose) polymerase 1 (TyrRS-PARP1) and SIRT1
pathway (TyrRS-PARP1-SIRT1 pathway) [97]. A very
low concentration of resveratrol (0.2 mg/l) significantly
attenuated Af3 neuropathology and AD-type deterioration
of spatial memory function in Tg2576 mice compared to
control [98]. In a transgenic mouse model of AD
(Tgl9959), dietary supplementation with resveratrol
(300 mg/kg) decreased amyloid plaque formation [93].
In order to translate the animal doses into ones that
are relevant in humans, a scaling factor of 0.08 is used
to calculate the human equivalent dose (http://www.fda
.gov/cber/gdlns/dose.htm). For resveratrol, this is about
24 mg/kg or 1.68 g per day for a 70 kg individual
[93]. Resveratrol is also known to act as a phytoestrogen
(this mode of action of resveratrol is discussed in more
detail in Phytoestrogens).

2.2.1.4. Effects of Resveratrol on Metabolic and Signalling
Pathways. Resveratrol has been suggested to regulate cel-
lular processes by activating key metabolic proteins such


http://www.fda.gov/cber/gdlns/dose.htm
http://www.fda.gov/cber/gdlns/dose.htm
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as SIRT1, 5' adenosine monophosphate-activated protein
kinase (AMPK), and peroxisome proliferator-activated
receptor gamma coactivator l-alpha (PCG-la) [99-101].
Sirtuins and nicotinamide adenine dinucleotide- (NAD™-)
dependent protein deacetylases are described as novel
therapeutic agents against neurodegenerative disease path-
ogenesis [102]. In fact, the essential neuroprotective effect
of resveratrol is based on the action of SIRT1 and AMPK
and on the phosphorylation/acetylation status of PGC-1«
that consequently activates the mitochondrial biogenesis
leading to the improvement of the mitochondrial activity
[103] (Figure 3).

In a study using Af-treated hNSCs, the neuroprotective
effect of (10 uM) resveratrol was demonstrated by the activa-
tion of the AMPK-dependent pathway by rescuing the
expression levels of inhibitory kappa B kinase (IKK) and by
restoring iNOS and COX-2 levels [104]. In the inducible
p25 transgenic mouse model of tauopathy and AD,
resveratrol-mediated (5 ug/ul) SIRT1 activation reduced
learning impairment and hippocampal neurodegeneration
[105]. The JAK/ERK/STAT signalling pathway (janus
kinases, extracellular signal-regulated kinases, and signal
transducers and activators of transcription) is implicated in
cell survival, proliferation, and differentiation, while the dys-
regulation of the JAK/STAT pathway in neurodegenerative
disorders contributes to neuronal loss, cognitive impairment,
and brain damage [96]. Treatment with 20 mg/kg resveratrol
exerted a neuroprotective effect via the JAK/ERK/STAT sig-
nalling pathway in a rat model of ischemia-reperfusion
injury. In detail, resveratrol attenuated the increase in phos-
phorylation of JAK, ERK, STAT, and JNK caused by
ischemia-reperfusion [96] (Figure 3).

2.2.2. Clinical Evidence. Only eight clinical trials and four
ongoing trials on resveratrol aim at evaluating the effects of
this compound on cognitive function in humans [106]
(Table 2). Efficacy results of resveratrol are based only on
one clinical trial in MCI and one in AD patients.

2.2.2.1. Young and Old Healthy Subjects. Witte et al. con-
ducted a study to evaluate the effect of resveratrol (200
mg/day) supplementation in a formulation with quercetin
320 mg in 23 healthy overweight older individuals versus pla-
cebo during 26 weeks. They showed that resveratrol supple-
mentation is able to improve memory performances and
glucose metabolism and is able to increase hippocampal
functional connectivity in older adults for the maintenance
of brain health during aging [107]. No effect on cognitive
function was detected in young healthy people [94, 95].

2.2.2.2. Patients with Cognitive Decline and MCI. Lee et al.
examined the effects of grape consumption (which contains
resveratrol) on cognitive function and metabolism in the
brain of patients with mild cognitive decline and demon-
strated a protective effect of the grape extract against patho-
logic metabolic decline [108]. In a more recent 14-week
study carried out on 80 postmenopausal women aged 45-85
years, it was proven that a regular consumption of a modest
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dose of resveratrol (75 mg twice daily) is able to enhance
cerebrovascular function and cognition and to reduce their
heightened risk of accelerated cognitive decline [109].

Clinical studies are underway to explore the beneficial
effect of resveratrol on MCI. In the ongoing trials, one four-
month resveratrol supplementation study in phase 1 aims at
evaluating the efficacy and safety of bioactive dietary prepara-
tion (BDPP) atlow, moderate, and high doses in treating mild
cognitive impairment on 48 MCI subjects (55-85 years) [110].
The purpose of another study in phase 4 is to test the effect of
a six-month administration of resveratrol on brain functions
in MCI subjects (50-80 years) (National Institutes of Health,
ClinicalTrials.gov) [111]. In a randomized, double-blind
interventional study, resveratrol intake (200 mg/day, 26
weeks) reduced glycated hemoglobin Alc, preserved hippo-
campus volume, and improved hippocampus resting-state
functional connectivity (RSFC) in 40 well-characterized
patients with MCI (21 females, 50-80 years) [112].

2.2.2.3. Patients with Moderate AD and Dementia. Class II
evidence provided by the study of Turner et al. on patients
with AD showed that resveratrol (500 mg/day to 2 g/day,
52 weeks) is well-tolerated, safe, and able to decrease Af,,
levels in cerebrospinal fluid (CSF) and plasma but had no sig-
nificant effects on cognitive score [113]. Recently, a phase 2
study was conducted investigating the effect of resveratrol
(500 mg) in individuals with mild to moderate AD confirm-
ing its tolerability and safety as well as its modulation of AD
biomarker pathways [114]. Currently, an ongoing study in
phase 3 tests the effect of resveratrol supplementation (215
mg/day for 52 weeks) on cognitive and global functioning
in mild-to-moderate AD patients (50-90 years) [115]. A sec-
ond ongoing study in phase 3 aims at evaluating the effect of
resveratrol combined with glucose and malate in slowing
down the progression of AD after 12 months in mild-to-
moderate AD (50-90 year old patients) [116].

On the basis of the results from the very few clinical trials
in MCI and AD, no conclusion about the efficacy of resvera-
trol on cognition can be drawn at the current time, but prom-
ising trials are underway.

2.3. Neurosteroids. Neurosteroids offer therapeutic opportu-
nities through their pleiotropic effects on the nervous system.
They are a subcategory of steroids synthetized de novo from
cholesterol in the central nervous system independently of
supply by peripheral steroidogenic glands [117, 118] and
accumulate within the brain in neurons or glial cells [119,
120]. Neurosteroids are derived from cholesterol which is
translocated from the outside to the inside of mitochondria
via the translocator protein (TSPO). In the inner mitochon-
drial membrane, cholesterol is then converted by the cyto-
chrome cholesterol side-chain cleavage enzyme (P450scc)
to pregnenolone, the precursor of all the neurosteroids
[121]. In particular, pregnenolone and allopregnanolone play
an essential role in aging, in the performance of memory, and
in physiopathology. Indeed, the age-related drop of neuro-
steroids gives rise to neuronal degeneration and dysfunction
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in human and animal models owing to the loss of neuroster-
oid neuroregenerative and protective effects [122, 123]. Allo-
pregnanolone is used in several studies as a plasmatic
biomarker for AD because of its reduced level in the plasma
of demented patients [122]. It is known to be a regenerative
agentin the brain [124]. Several neurosteroids were quantified
and were found decreased in postmortem brains of aged non-
demented controls and aged AD patients. The transgenic mice
model of AD (APPswe+PSEN1A9 mice) presents a decreased
ability to form allopregnanolone in the hippocampus [125].

2.3.1. Allopregnanolone

2.3.1.1. Mechanisms of Action Based on Preclinical Evidence.
2.3.1.1.1. Direct Effects of Allopregnanolone on Mitochondria.
In control and APP/AS SH-SY5Y cells, allopregnanolone
improved basal respiration and glycolysis as well as increased
the bioenergetic activity and ATP production [126]. In APP-
transfected cells, a pretreatment with allopregnanolone
exerted a neuroprotective effect against oxidative stress-
induced cell death via the amelioration of the cellular and
mitochondrial energy, the reduction of ROS, and the
improvement of mitochondrial respiration [126]. Thereby,
it exerted its beneficial effect by improving the mitochon-
drial redox environment, such as MnSOD activity and mito-
chondrial ROS levels [127]. Moreover, allopregnanolone
increased ATP levels and respiration in mouse primary cor-
tical neurons [127]. In addition, in vitro, allopregnanolone
potentiated mitochondrial respiration in both adult neural
stem cells (NSCs), neurons, and mixed glia [128]. In vivo,
allopregnanolone was able to restore the ovarectomized-
(OVX-) induced decrease in mitochondrial respiration in
both non-Tg and 3xTgAD mice [128]. Moreover, allopreg-
nanolone also improved the activity of bioenergetic enzymes
such as pyruvate dehydrogenase (PDH) and a-ketoglutarate
dehydrogenase («KGDH) [128].

2.3.1.1.2. Effects of Allopregnanolone on A Toxicity Related
to Damage of Mitochondria. In a recent study, allopregnano-
lone was shown to exert an increased neuroprotective activity
against Af3,,-induced cell death in neural stem cells [129]
(Figure 5). In vivo, the natural neurosteroid allopregnanolone
appears to be a promising therapeutic tool for the develop-
ment of neurogenic and/or neuroprotective strategies, but
diverse points have to be taken into account, including the
dosing regimen, the treatment regimen, bioavailability,
solubility, route of administration, and sex differences. Acute
single administration of allopregnanolone promoted neuro-
genesis in the subgranular zone (SGZ) in the triple transgenic
mouse model of AD (3xTgAD) at 3 months of age prior to
the appearance of AD [71]. Allopregnanolone reversed mem-
ory and learning deficits in these mice. Chen et al. showed
that allopregnanolone administration (once/week for 6
months) decreased A generation and promoted survival of
newly generated neurons in the brain of 3xTgAD [130]. They
also demonstrated that allopregnanolone increased oligoden-
drocyte myelin markers and ameliorated cholesterol homeo-
stasis and clearance from the brain by increasing the
expression of PXR and Liver-X-receptor (LXR). Singh et al.
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reported that allopregnanolone is able to restore cognitive
performance in the preplaque phase of AD as well as memory
and learning in aging 3xTgAD mice [131]. All these studies
demonstrated the neuroprotective effects of allopregnano-
lone against the Af3 toxicity in 3xTgAD mice and also its
capacity to stimulate rodent and human neural progenitor
cell proliferation and to compensate the cell loss [130, 132].
Continuous infusions of allopregnenanolone were antiregen-
erative, while intermittent administration promoted repair
and renewal in a mouse model of AD [124]. The mode of
action of allopregnanolone is summarized in Figure 5.

2.3.1.2. Clinical Evidence. Currently, there is only one phase I
ongoing clinical trial testing the safety and the tolerability of
allopregnanolone in patients with mild cognitive impairment
and early AD [133] (Table 3). The primary aim of this phase 1
study is to evaluate the maximally tolerated dose after intrave-
nousinjection ofallopregnanolone (2,4, or 6 mg, once per week
for 12 weeks). Thus, no clinical evidence is currently available.

The natural neurosteroid allopregnanolone appears to be
a promising therapeutic tool with specific regard to its neuro-
genic properties besides its mitochondria-directed effects.
However, more trials are urgently needed to prove that.

2.4. Phytoestrogens. Phytoestrogens are the most bioactive
molecules of soy and present structural similarity to the
17 3-estradiol, which is the major circulating estrogen. Spe-
cific estrogen receptors have been shown to localize in
mitochondria in the frontal lobe and the hippocampus of
men and women suggesting a role of estrogen in controlling
cognitive functions and memory processes via energy supply
[134]. Estrogen plays a neuroprotective role during the aging
process, especially through its beneficial impact upon
mitochondrial metabolism by increasing glucose utilization
by cells as well as by enhancing ETC activity, by stabilizing
the MMP, and by preventing ROS production and calcium-
induced excitotoxicity [135]. Moreover, females live longer
than males and this can be attributed in part to the
antioxidant effect of estrogen and the upregulation of life
longevity-related genes [19, 136]. The phytoestrogens are
characterized by their ability to bind to estrogen receptor «
and estrogen receptor 3 and to exert similar responses to
endogenous estrogens [137]. Isoflavones are a subclass of phy-
toestrogens and are contained abundantly in soy and soy-
beans. Soy presents estrogenic effects attributed to genistein,
daidzein, and glycitein. The most potent isoflavone is genis-
tein, while daidzein and glycitein present an affinity to the
estrogen receptor, 100-500 times lower than genistein [138].
Estrogen receptors are localized in the important brain areas,
including the prefrontal cortex and the hippocampus that are
also known to be vulnerable to age-related decline [139-142].

2.4.1. Mechanisms of Action Based on Preclinical Evidence

2.4.1.1. Effects of Phytoestrogens on A and Tau Toxicity
and Cognitive Performance Related to Damage of
Mitochondria. One of the most important phytoestrogens
is resveratrol, an estrogen receptor agonist/antagonist. In
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TABLE 3: Ongoing clinical trial on the effects of allopregnanolone in MCI and mild AD.

Study design Allop regnanolf)ne Duration Subjects Purpose Main results References
dose/preparation
Allopregnanolone 2, (8) For each dose Determine the
4, or 6 mg group, 55 years and maximally tolerated
R, DB, parallel intrave)nous injection older, both genders dose, safety and
0P ) MCI or mild AD > Srey , NCT02221622
assignment once per week or 12 weeks . tolerability, Not available
. (6) Randomized to L [133]

Phase 1 placebo intravenous pharmacokinetic

o AP
injection once per

week

(2) Randomized to
placebo

profile, and effects on
cognitive function

The number of patients involved in the trials is indicated in parentheses.

particular, resveratrol acts on estrogen receptor f3, whose
activation is known to play a major role in cognitive pro-
cesses, leading to the improvement of cognitive impairment
in AD [143]. The soybean is a source of vegetable proteins

and contains also other functional ingredients including
phytoestrogens. The isoflavones genistein and daidzein
have been shown to present protective effects against tau
protein phosphorylation [144]. Animal models confirmed
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the neuroprotective effects of phytoestrogens. Genistein, the
most active molecule of soy isoflavones, improved Apf-
induced cell death and reduced neuronal loss in rats
[145-147]. In OVX female rats, dietary supplementation
of soy phytoestrogens (0.4 g/kg or 1.6 g/kg) or 17-estra-
diol (0.15 g/kg) for 12 weeks has been shown to increase
the expression of brain neurotrophic factors such as BDNF
and tropomyosin receptor kinase B (TrkB) and, as a result,
to ameliorate hippocampal learning [148]. In normal and
OVX transgenic AD mice, a selection of phytoestrogens in
combination, composed of genistein, daidzein, and equol,
has been shown to improve spatial working memory
performance and to reduce mortality, as well as to delay
neuropathological changes associated with AD [149].

2.4.1.2. Effects of Phytoestrogens on Oxidative Stress. The
phytoestrogens are also known for their neuroprotective
antioxidant effects in neuronal cell models after exposure to
neurotoxic substances [150-152]. Phytoestrogens are able
to reduce ROS within a cell and to protect from cellular
damage [153]. In aged mice, soybean supplementation has
been shown to prevent cognitive deficits by decreasing free
radical generation, by enhancing scavenging of free radicals,
and by increasing GSH levels [154]. Compared to estrogen

itself, less evidence is provided for the direct effects of phy-
toestrogens on mitochondria, but antioxidant properties
were demonstrated [155-158]. The molecular effects of phy-
toestrogens are summarized in Figure 6.

2.4.2. Clinical Evidence. Until today, no clinical trials in
MCI and AD were performed. Thus, currently there is
no clinical evidence.

2.4.2.1. Healthy and Postmenopausal Women. Among five
randomized controlled trials, four recent studies reported
the beneficial effect of phytoestrogens on cognitive function
in healthy individuals (Table 4). In a study with young
healthy adults of both sexes, a high soya or a low soya diet
for 10 weeks had a beneficial effect and showed significant
improvements in short-term and long-term memory as well
as in mental flexibility [159]. In another cross-over design
study, the administration of 4 capsules/day containing soya
isoflavones during 6 weeks improved the spatial working
memory of men aged 30-80 years [160]. In postmenopausal
women, 6 months of treatment duration with isoflavone
supplementation provoked better learning, mental flexibility,
and increased attention, as well as caused improvement in
mood and lower depressive symptoms [161]. In a small
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mixed gender sample of older adults, soy supplementation
ameliorated the visuospatial memory and the construction
of verbal fluency and speeded dexterity [162]. All these stud-
ies demonstrated that phytoestrogens may affect human
cognition. However, no clinical trials of phytoestrogens are
known for the prevention or the treatment of AD.

Inconclusive findings have also been reported from
randomized controlled trials and observational studies in
humans. In fact, these discrepant data could have several
possible reasons. Investigation in European cohorts showed
that a low dietary consumption of phytoestrogens had a
significant effect on the improvement of the quality of life
but no effect on cognition [163].

Mediating variables in the characteristics of the study
population such as gender, age, ethnicity, and menopausal
status appears to play an important role [164]. Phytoestro-
gens have been shown to have time-limited positive effects
on cognition. These findings are in line with estrogen treat-
ment which also exerts an initially positive short-term effect
on cognition and a reversion after a long-term continuous
use in aged women [164].

Globally, the effects of phytoestrogens can be dependent
upon a window of opportunity for treatment and can affect
males differentially than females due to the diminished
presence of ER-mediated protective mechanisms and the
tyrosine kinase activity with a potentially deleterious out-
come of the supplements [165]. An age-dependent effect of
phytoestrogen supplements is suggested in postmenopausal
women [165]. In males, the findings are equivocal and sparse,
and more investigations are needed to determine whether the
effects will be deleterious or beneficial [165].

3. Conclusion

In this article, the efficacy of standardized Ginkgo biloba
extract, resveratrol, allopregnanolone, and phytoestrogens
in combatting age-related cognitive decline has been
reviewed. The mechanisms of action as well as preclinical
and clinical evidence for each of those entities have been dis-
cussed. The four entities share common mechanisms of
action but also diverse ones. In terms of the main AD fea-
tures, A3 and tau, all four categories were able to reduce
the Af accumulation but only GBE and phytoestrogens
seem to reduce tau hyperphosphorylation. Similarly (and
quite predictably due to their phenolic character), all four
act as antioxidants either by reducing ROS and oxidative
stress (GBE, phytoestrogens, and allopregnanolone) or by
enhancing the activity of antioxidant enzymes such as SOD
and GPx1 (GBE, resveratrol, and phytoestrogens) and by
reducing lipid peroxidation (GBE) and prooxidant enzymes
such as Nox4 (resveratrol). GBE, resveratrol, and allopregna-
nolone target mitochondria by enhancing their functions
(activities of complexes, oxidative phosphorylation, oxygen
consumption, respiration, mitochondrial membrane poten-
tial, and ATP production), while in addition to this, GBE
and resveratrol promote mitochondrial biogenesis. This is
particularly important since mitochondria play a pivotal role
in synaptic plasticity that is reduced in pathological states in
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the brain. However, there are also some differences in the
mechanisms of action of the four discussed substances and
mainly in the pathways through which they exert their ben-
eficial effects. Based on our review of the literature, GBE res-
cues the Af neurotoxicity through the activation of the Akt
pathway and through phosphorylation of CREB. Neuro-
trophic factors such as BDNF are stimulated both by GBE
and by phytoestrogens. Resveratrol leads to Af clearance,
enhancement of mitochondrial biogenesis and metabolism,
and reduction of inflammation and ROS mainly through
the activation of SIRT 1 and AMPK pathways as well as
through the deacetylation of PGC-1«a and the modulation
of the JAK/ERK/STAT pathway. Phytoestrogens act as ER
receptor modulators. Resveratrol can additionally act as a
phytoestrogen and bind to the ERf receptor. In terms of
in vitro assays, it should be taken into account that the
extract and the substances should be tested in meaningful,
physiologically relevant concentrations and not in irratio-
nally high ones.

Regarding clinical trials, there is a different level of evi-
dence for the four phytochemicals. Standardized GBE, res-
veratrol, allopregnanolone, and phytoestrogens appear in a
descending order according to the level of existing clinical
evidence. According to the World Federation of Societies of
Biological Psychiatry (WFSBP) Guidelines, GBE has been
classified in category B and grade 3 in terms of the outcome
of existing studies. Therefore, there is sufficient and good
clinical evidence for the efficacy of GBE. There is increasing
and promising clinical evidence for resveratrol, but more
studies of larger sample size are definitively needed. Lastly,
there are no clinical trials indicating the beneficial effect of
allopregnanolone and phytoestrogen in age-related cognitive
decline disorders. There is only promising evidence from
preclinical data regarding allopregnanolone and phytoestro-
gen. Notably, the four entities follow the same descending
order regarding the existing level of clinical evidence and
their mitochondria-improving properties. All in all, the effect
on mitochondria goes hand in hand with the clinical effect
and this highlights one more time the importance of these
organelles not only in the pathogenesis of AD but also in
aging in general.
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